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Origin of Vector Parasites in Numerical
Maxwell Solutions

Daniel R. Lynch and Keith D. Paulsen, Member, IEEE

Abstract —Dispersion relations are derived for conventional finite
element and finite difference approximations of four versions of the
Maxwell equations in the plane: the double-curl equation; the vector
Helmholtz equation; the penalty equation; and the primitive, coupled
Maxwell curl equations. Comparison with their analytic counterparts
reveals the presence and origin of vector parasites. In each case there
are no essential qualitative differences between the finite difference and
finite element approaches per se; all of the issues surround the form of
the differential equation underlying the discretization.

For the double-curl and penalty methods, the dispersion relations are
double-valued, admitting an extra, spurious dispersion surface of real-
valued wavenumbers. As a result, low wavenumbers support both
well-resolved and poorly resolved vector parasites. Additionally the
“physical” modes in these solutions have nonzero divergence, such that
satisfaction of divergence-free boundary conditions necessarily invokes
the parasitic modes. The Helmholtz schemes have monotonic, single
valued dispersion relations for divergence-free physical modes. Specifi-
cation of divergence-free boundary conditions is sufficient to guarantee
the absence of parasites. The primitive schemes have single-valued but
folded (nonmonotonic) dispersion relations, supporting poorly reselved
vector parasites at low wavenumbers. Use of a staggered finite difference
grid eliminates these parasites and results in a dispersion relation
identical to that for the Helmholtz scheme. In all cases where vector
parasites arise the same essential weakness in the discretized form of
either the first or cross-devivative is responsible. Overall, this analysis
illuminates fatal weaknesses in the double-curl schemes considered, the
reliance on a staggered mesh in the primitive schemes, and the strength
of the vector Helmholtz schemes. '

I. INTRODUCTION

HE occurrence of vector parasites in numerical solutions
to Maxwell’s equations has been reported by several
investigators [1]-[7], especially in the finite element context.
There are many options for dealing with these spurious
solutions, including the use of special or staggered meshes
[8]-[11], constrained bases and/or weighting functions
[12]-[15], modified weak-form functionals [4], [7], [16], and
the use of potentials rather than the physical fields as pri-
mary variables [17]. Despite the chronic nature of this prob-
lem, a coherent explanation with predictive power, i.e., one
that provides criteria for a priori selection among the various
numerical options, has remained elusive.
In this paper we show the origin of 2-D vector parasites in
the dispersion relations which we derive for basic finite
difference (FD) and finite element (FE) discretizations of
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four versions of the Maxwell equations:

* the double-curl equation (FDD and FED schemes)

* the vector Helmholiz equation (FDH and FEH schemes)

* the penalty method (FDP and FEP schemes)

* the primitive (single-curl) Maxwell equations (FDM and
FEM schemes)

All are implemented on uniform square grids and use equiv-
alent-order approximations—second-order centered differ-
ences for the FD methods, and Galerkin approximations
with C° bilinear scalar bases for the FE methods.

There are three essential findings. First, a double-valued
dispersion relation characterizes both FE and FD discretiza-
tion of the double-curl equation and its related “penalty”
form. This generates two dispersion surfaces, one “physical”
and the other spurious. As a result, two families of solutions
are supported by a given wavenumber, one of which is
completely unphysical. The FD and FE versions of these
equations are not materially different in this fundamental
behavior. Both FD and FE methods based on the Helmholtz
equation possess well-behaved, monotonic dispersion rela-
tions which resemble the exact analytic version. This single
relation characterizes both physical and spurious modes alike,
and can be viewed as the congruence of the two families in
the penalty method when p=1.

The second essential finding relates to the manner in
which physical and spurious modes are combined in driven
problems. For the discretized double-curl and penalty meth-
ods the two modes are not perfectly sorted—specifically, the
physical modes have nonzero divergence, and the spurious
modes have nonzero curl. As a result, a physically well posed
boundary condition with zero divergence will necessarily in-
voke a blend of both modes. By contrast, the physical modes
supported by the discretized Helmholtz schemes are pre-
cisely divergence-free. Therefore the potential for spurious
modes is eliminated by the enforcement of physical boundary
conditions. Among the FE methods examined here, only the
Helmholtz scheme provides a physical solution to a physi- .
cally forced problem, uncontaminated by vector parasites.

The fundamental flaw in the double-curl and penalty
methods can be further traced to the numerical weakness of
the cross-derivative term 92 /dx dy. This term converges more
slowly at high resolution than its companions 2 /3x?, etc.; at
low resolution it is “folded,” introducing an essential confu-
sion between modes with short (e.g. 2Ax) and long (e.g. )
wavelengths, These two weaknesses generate in turn the two
types of parasites reported by Davies et al. [3] and in our
own work [7]: well-resolved parasites with nonzero diver-
gence and poorly resolved parasites at or near the mesh
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cutoff point in one of the spatial directions. We refer to
these as type A and type B parasites, respectively.

The third essential finding is a folded dispersion relation,
which characterizes the primitive schemes, supporting low-
wavenumber parasites at coarse resolution. We refer to these
as type C here. As above, the FD and FE expressions are not
substantially different. However in the FD case the parasites
are quickly and effectively eliminated by use of a staggered
mesh. This strategy has proven successful in time-domain FD
calculations; it remains somewhat unnatural in the FE con-
text, where no unique, direct analog has emerged. The root
cause of the folded dispersion relationship is the numerical
first derivative in these schemes. It has the same fundamen-
tal confusion among long and short waves as does the cross-
derivative described above.

The analysis here is of course limited to the numerical
schemes and ideal, homogeneous grids selected. Within these
limitations, however, it explains the occurrence of two types
of vector parasites which have been reported in double-curl
solutions; their reported absence in Helmholtz solutions; and
the disappointing track record of the finite element method
based on the primitive equations with conventional elements.
As a tool, the dispersion analysis has explanatory and predic-
tive power and is recommended as an analytical filter for
other proposed methods for eliminating vector parasites.
While no analysis is sufficient to guarantee freedom from all
numerical pitfalls (e.g. those provoked by inappropriate or
unphysical boundary conditions, material interfaces, etc.), if
a given discretization fails this analysis it can be considered
fundamentally flawed at the outset.

II. ANALYTIC SOLUTION

To begin, we review the dispersion relations for analytic
solutions in the plane. Throughout we assume solutions of
the form

Ex(x7 y) ExO Hox+yy
E(x’y)={Ey(x,y)}:{Eyo}e( )

(1)
where (E,, E ;) are unknown constants. Differentiating (1)
allows us to define the magnitudes of the divergence and
curl, D and C:

V-E = Del@*+» (2
V X E = Ce"@**73)3 3)
where

D=i(0E+7vE,q) (4)
C=i(0E,,—vE,) (5)

Equations (4) and (5) may be inverted:
Eyy=—i(aD—yC) /(0% +7) (6)
Eo=—i(cC+yD)/(a?+v?) (7)

and we recall that the pairs (D,C) and (E,,, E ) are equiva-
lent; i.e., either pair is sufficient to describe a wave with a
given wavenumber pair (o,vy).

We first consider the double-curl equation

VXVXE-k?E=0 (8)
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which may be reexpressed in matrix form:

02 a2
2

ay? dydx E, 0 9

e el ©
- =2
ox 3y ax?
Substitution of (1) yields

yz—kz - vyo E.o ={0} (10)

—oy  ol=k*||Evw 0/

For nontrivial solutions the matrix in (10) must be singular:
(V2= k) (o?~k*)—a?y*=0 (11)

or equivalently
kz(kz—o-z—yz)=0. (12)
In (12) there are two obvious sets of solutions: S1, in which
k*=0; and S2, in which k2=02+ y2 $1 is readily classi-
fied as curl-frec by substituting k2 = 0 into the matrix equa-
tion (10) and solving for the required relationship between
E,o and E,;. The divergence may be found in turn from (4).
Similarly for §2, we find D = 0 and obtain the curl from (5).

Summarizing, the double-curl equation admits two sets of
solutions:

E, E
S1:k2=0; C=0; D=i—(c?+y?) =i-2(a2+4?)
o Y

(13)
2 2 2 Exro
S2:k*=0c’+vy% D=0; C=-i—(0c%+v?)
Y
E
=i (o7 +y7). (14)
Next consider the Helmholtz equation
V2E +k*E=0 (15)
which in matrix form is
2 2
"l + 3 + k2 0 .
dx ay X 0
v o |le)~{o) 0o
0 - + ) + k2
ax ay

Substitution of (1) yields

—ol-yr+k? 0 E,
7Y X 0 ={0} (17)
0 —a?—y2+ k|| Epo 0

for which nontrivial solutions exist only when k2 =o2+ y2,
i.e., the identical dispersion relation as for set $2 above. In
this case however, E,, and E  are completely uncoupled
in (16). Therefore, (17) provides no information about
(E,,E,p), and D and C are completely unconstrained.
These solutions are therefore a superset of S$2 above. With-
out loss of generality we divide them as follows:

E
SVik?=02+9% C=0; D=i—2(g2+42) (18a)
g

C=—i

EX
y()(02+y2) (18b)

SZ:k2=02+72; D=0,
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with $2 exactly as in the double-curl equation, and S1' a
shifted version of S1.

Next we consider the penalty method, based on the com-
posite equation

VXVXE-pV(V-E)—k?E=0 (19)

where p is the dimensionless penalty factor. In matrix form
we have

82 82 92
—— —p—s — k2 1- ,
ay? paxz ( p)ayax E, 0
32 32 32 ) Ey —{0}
1- -—-p—-—k
=5 ax2 P2

(20)
Substitution of (1) gives
Y2+ pa?—-k* —(1-p)yo |[Ex ={0} (21)
—(1-p)ay o +py?—k?*||Ex 0
and the dispersion relation satisfies
(kz_paz_pyz)(kz_az_yz) =0.
The two sets of solutions are

(22)

E
1 k> =p(0?+7%); C=0; D=i—(o?+v2) (23)
ag

E
$2:k?=g2+9% D=0; C=-i—(a2+y%). (24)
Y

S2 is exactly the same as in the double-curl and Helmholtz
equations; S1” is a shifted version of S1.

Finally, we consider the coupled, single-curl Maxwell
equations

VX H=-~iweE (25)
VXE=ionH. (26)

We refer to these as primitive because they are the unaltered
forms from which the double-curl and Helmholtz equations
are derived by differentiation. In matrix form, we have

- s
iwe I

o [[E) o
0 iwe ~ IE_Iy ={8} 2n
T B :
5w

Introduction of (1) and its equivalent for H, gives

iwe 0 iy E 0
0 ive —io|{ Eyo ={0}

iy —ioc iwp j\H, 0

(28)

and the singularity of (28) provides the dispersion relation
we(k?-o?2-y2) =0 (29)

where k2= (wu)we). The primitive equations support ex-
actly the sets S1 and S2 as in the double-curl equation.
Substitution of (29) into (28) confirms that (D,C) are also
identical to the double-curl case.
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Fig. 1. (a) Contours of the dimensionless analytic dispersion relation

for solution sets S2, displayed in (52, G?) space. (b) Zones of potential
parasites: Type A—well resolved in both directions: type B—well re-
solved in one direction, poorly resolved in the other; type C—poorly
resolved in both directions.

All of these versions of the Maxwell equations share the
physical solution set §2 with D =0; and the various sets
$1, 81, 81" all have C = 0. For driven problems, the response
is restricted to S2 in different ways. S1 is ruled out in
double-curl and primitive solutions a priori for nonzero k2
For the other operators, S1' and S1” are supported at
nonzero k2 and thus in general they may contaminate the
solution, depending on the boundary conditions. The property
D =0 of §2 is critical in these cases. Specification of physical
boundary conditions with D =0 is sufficient to guarantee
that the solution lies entirely in $2. As discussed below,
numerical schemes which emulate §1' or S1" or which
through discretization error produce shifted versions of 1
will necessarily be contaminated by spurious modes unless
D =0 for the corresponding set S2.

In Fig. 1(a) we display for reference the dispersion relation
(14) for the physical set S2. We introduce a mesh spacing A
and plot the dimensionless quantities K2 =(kh)?* as a func-
tion of $2=(oh)? and G2=(yh)?. We restrict attention to
the Nyquist range — 72 <($2,G?) < w? and to quadrants I
and II. Quadrant III supports only k2 < 0; and quadrant IV
is a mirror image of quadrant II. In Fig. 1(b) we delineate
three zones A, B, and C, in which we will focus our search
for parasites of type A (well resolved in both directions), type
B (well resolved in one direction, poorly resolved in the
other), and type C (poorly resolved in both directions). We
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TABLE 1
Di1FreRENCE OPERATORS FOR FD AND FE APPROXIMATIONS
FD FE
02¢ ¢1+1,1"2¢1,J+¢'1~—1,/ l ¢l+1,j+l_2¢l,]+1+¢l~l.j+l
ax? h? 6 h?
1y
4 ¢z-r1.1_2¢z,]+¢z—l,1
T2 2
6 h
+i d)H—I,_/—l_2¢z,171+d)171.171
6 h®
62¢ ¢1,]+1_2¢1,1+¢1,1—-1 l ¢l+l.j+1_2¢l+1.]+¢l+1,]—1
ay? h? 6 i
¢ 4 ¢l,]+1_2¢1‘/+¢l,141
+_.
6 h?
+l Gt 1720, by
6 h*
32¢ ¢l+l,]+1_¢l—1,]+1_¢l+1.]*1+¢l—1.]—-1 ¢l+1,]+1—¢l~1‘j+1_¢l+1,]—1+¢l—1,]—1
oxdy 4h? 4h*
1
¢ ¢z+1,1_¢1—1,} l ¢l+1.j+1_¢l—1~!+1
ox |, 2h 6 2h
+i ¢l+l,j_¢l—l,]
6 2h
+l ¢z+1,1—1"¢1—1,1—1
6 2h
% ¢z,j+1_¢z,17] l ¢1+1,]+1_¢1+1,1—1
oy |, 2k 6 2h
+i ¢z,]+1-¢1,1-—1
6 2h
+l ¢t—1,]+1_¢1—1./~—1
6 2h
n y 1 Girt 14, 1t d
6 6
+i ¢11—1‘1+4¢1,1+¢1—1.1
6 6
+i(¢zH,]*I+4¢1,171+¢1—1,/—1
6\ 6

arbitrarily define well resolved as §? and /or G?<0. 4, ie.,
roughly ten or more nodes per wavelength.

II1. DirrerRENCE EQUATIONS

Here we develop and record the difference equations for
all of the discretized systems to be considered. We use the
natural (i, /) node numbering system on a uniform mesh with
constant mesh spacing 4= Ax = Ay. In the FD cases we use
conventional second-order centered differences; all terms
required for the double-curl, Helmholtz, and primitive equa-
tions appear in Table I, where we also show the individual
Galerkin terms weighted with basis function (i, j). Each has
been normalized by the factor #° to highlight the analogy
with FD expressions.! On this simple square mesh, the FE

'Specifically, 92¢ /dx2 for the FE method is 1/h*((8% /ax?W,,) =
—1/h%3é /9x)dd,, /9x)), with ¢, the basis function centered at
node (i, ) and ( ) indicating integration over the plane. The other terms
are similarly defined.

expressions reproduce conventional FD forms, with spatial
averaging by Simpson’s rule in various ways. Note that both
the FD and FE cross-derivative terms are identical.

Assuming a numerical solution of the form (1), the solu-
tions at adjacent nodes in the x direction are shifted by the
exponential factor

b1 =€’ (30)
(S = gh) and similarly for the y direction. Use of these shifts
allows condensation of the difference expressions in Table I.

For example, the second centered difference operator may
be reduced to

2
= p(COS(S)““l)d’:
1 1 . .
ﬁ(¢i+l —2¢;+b,_1) = ﬁ(els—z‘*‘ e )¢,

in(S/2) |
=_UZ[M] ¢l

< . (31)
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TABLE 11
DEFINITION OF DISCRETIZATION FACTORS FOR SOLUTIONS OF THE
Form ¢ = ¢,;e"™**7) (Ax = Ay = h Is THE MESH SPACING;
S=oh, G=yh)

4+2cos(S 4+2cos(G
4 Ar2eos(5) 4 2 AH2e0s(6)

* 6 y 6
sin(S) sin(G)
T B=—%
sin (S /2) sin(G /2)
F(8/2) Y (G/D)
TABLE III
DIFFERENCE OPERATORS As IN TABLE I FOR ¢ = ¢, e"@*+7Y)
FD FE
82
6x_qz —C30'2¢U —AyC)fa'nglj
2¢ o
a
W 9] - C}%’)’Z(ﬁ,j - AXC372¢”
%
axay - BxBy07¢z] - BxBy0'7¢11
)" . .
r iB,o¢,, iA,B.od,,
Z2 . .
:97 lByy(bz] LAxBy7¢lj
i
¢|ii ¢‘l} AxAy¢lj

The discretization factors A, B and C are defined in Table II
and approach unity as the mesh is refined.

The effect of the finite difference approximation is concen-
trated in the discretization factor C, = sin(S /2) /(S /2). Sim-
ilarly for the first centered difference we have
2isin(S) | sin(S)
——;=io

2h : S

1
E(¢i+l_¢i—1)= ]d’i (32)

which defines a second discretization factor B, =sin(S)/S.
The Simpson rule operator defines a third factor, A4,
_ 4+2cos(S)

since
6 b

4+2cos(S)

- ]¢,. (33)

(Pip T4, + ;)= [

These discretization factors are summarized in Table II.
They permit the compact expression in Table IIT of the
various difference operators from Table I; in effect Table III
is the Fourier transform of Table I. Note that all of the
expressions in Table IIT approach their continuum counter-
parts as § and G become arbitrarily small.

In every case, only the averaging factors A,, 4, distin-
guish the FE from the FD terms. We may therefore general-
ize all the mathematics by using the FE terms exclusively and
retrieve the FD versions by setting 4, and A, to unity when
needed. Finally, note that both 4, and A, are real and
bounded by (1/3,1). We may divide by either freely.

IV. DouBLE-CURL SCHEMES

From Table III we assemble the relations for the dis-
cretized double-curl equations in the same form as (9) and
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(10):
Anyz Z_AxAykZ _ByBx’)’O' Extj ={O}
—B,B,oy A,C25%— 4, Ak* || Eyy 0J
(34)

For nontrivial solutions the matrix must be singular, which
leads to the discrete version of (12):

2.2 2,2 2 2 2 2
k2 kZ_Cxo. _ny + g2y2 &ﬂ_iﬁ =
A, Ay AxAy AiA%,

(35)

It is immediately clear that there is a problem with this
scheme—th=re are two roots as in (12), but k2 = 0 is not one
of them:

K2 K?
k?=—+ — | —€2 36
7+ (2) ¢ (36)
where
C20'2 C2 2
DT L 24 (37)
A, A,
and
Cc?c? B! B?
el =02y —x—y———z-—yz (38)
A, A, Ap A5

Note that x? is an intuitively appealing emulation of the
analytic relation (14) and that €2 > 0 in the first quadrant.

A. FDD Scheme

Examination of the FD version of (36) in the first quadrant
is especially revealing. For small § and G, the two values of
k? approach (0, 2) asymptotically, imitating the analytic sets
S1 and S2. However the negative option results in k2> 0 for
all finite h. We therefore identify the negative option in (36)
as the spurious value, and the positive option as the “physi-
cal” one. The culprit here is the fact that B2 < C2 Essen-
tially the cross-derivative is obtained at half the resolution as
the other second derivatives; therefore e? never quite re-
duces to zero. This subtle imbalance allows well-resolved but
spurious solutions approximating set S1 to exist at low k%>
0—the type A parasite. As the resolution gets coarser (higher
S or G) the discrepancy between B and C grows, since oC,
increases with o monotonically toward the Nyquist cutoff
S =1, but oB, peaks at S == /2 and folds back to zero at
the Nyquist point. Thus at large S and/or G, the FDD
scheme is fundamentally confused, its cross-derivative unable
to distinguish very long from very short wavelengths. For a
fixed, well-resolved G, increasing values of § support larger
spurious values of k?—the type B parasite.

In Fig. 2 we plot both values of K2 from (36) versus S2,
for G2 fixed in the well-resolved range at G2 = 0.1. When
K2 < G?, the spurious solution is mixed numerically with the
exponentially decaying (5§ < 0) physical solution. The possi-
bility of a well-resolved (S? < 0.4) spurious mode (type A)
can be seen for very small X2 > 0, an imperfect emulation of
set S1. In Fig. 2 the type B spurious modes (higher $2) can

. also be seen to be supported at higher K2, approaching

spurious undamped short-wavelength wrinkles in the limit
K?=C2G? As G? decreases, these approach the limit G?



388

K2
Physical

SZ

Fig. 2. K? versus $? for the FDD scheme with a fixed (well-resolved)
G2 =0.1. Note the scaling breaks in the K? and S? axes near the origin.
The “spurious” curve shows nonzero K2 values over the full range of
52> 0.

=0, S2=m at K?>=0 (i.e., a constant in the y direction and
-an undamped wave of length 2/ in the x direction.

In Fig. 3 we display contours of K2 in (§2,G?) space. In
the well-resolved zone A, the physical root gives qualitative
fidelity to the analytic solution; and type A spurious solu-
tions are supported for very low K2 < 0.04. We use this limit
to define “small” K2 Type B spurious modes are evident at
either end of the K? contours in zones B of the first
quadrant, and are supported for K2 < 0.40. We define this
as the limit of “moderate” K 2. Type C spurious modes (poor
resolution in both directions) are supported at “large” K2,
above 0.4. Since these large values would be avoided in most
reasonable computations, these modes are of less interest
than those of types A and B. Note that over the full range of
quadrant I both the physical and spurious roots saturate at
K?=40.

For driven problems, K? is fixed and the dispersion rela-
tion is the composite of two constant K2 contours—one

- A,C20? - A,Cly* + A, A k?

” =)-09)
0 —A,Cl0?— A,Cly2 + A, A,k? |\ Eyy | \OJ

physical and one spurious. We illustrate such composites in
Fig. 4 for small and moderate values of K2 Problems with
large contrast in dielectric constant at material interfaces will
have two values of K? present at an interface, with continu-
ity conditions requiring the matching of the Fourier spec-
‘trum across the interface. Comparison of parts (a) and (b) of
Fig. 4 suggests that in such a situation extremely spurious
behavior on the low K? side could coexist with largely
physical behavior on the high K? side. This is borne out in
computational experiments [7].

The two roots K2 in (36) support different (E,, E ) modes,

or equivalently, (D,C) modes. Since the latter are of more -
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direct interest, we reexpress (34) in terms of (D, C) using the
definitions (6) and (7):

2
-B,B,SG Cis?-k?|LG S I\C 0/

Substitution of K? from (36) allows solution of (39) for the
ratio C/D as a function of (S,G) for the physical and
spurious modes in turn. A plot of C/D for the spurious
modes appears in Fig. 5. These modes are clearly close to
C =0 everywhere, with C /D peaking at 0.01 in zone A and
at 0.2 in zone B. Both type A and B spurious modes may
therefore be characterized approximately as divergence
modes. It is easy to show from (39) that D/C for the
physical modes is identical to — C /D for the spurious modes,
confirming that the physical modes are nearly divergence-
free. This classification is not pure, however, and specifica-
tion of physical boundary conditions with, for example, D =0
will necessarily invoke a blend of physical and spurious
modes. In effect, specification of physical boundary condi-
tions guarantees the presence of unphysical features on the
interior.

Finally, the increasing influence of parasites at low K2 is
of fundamental importance, The threshold of engineering
accuracy is at K?=(kh)?>=04, ie., about ten nodes per
wavelength. This is also the threshold for type B parasites.
The path to convergence then follows increasingly smaller
values of K2, necessarily encountering type A as well as type
B parasites along the way.

B. FED Scheme

The FE version of (36) is qualitatively the same as the FD
version, and appears in Fig. 6. The same basic corrupted
structure is evident. Type A parasites occur for roughly
K?<0.015, and type B parasites for K? < 0.40. As in the
FDD scheme, the presence of parasites is enhanced as K2
becomes arbitrarily small.

V. HELMHOLTZ SCHEMES

The difference equations for the Helmholtz schemes may
be assembled by direct substitution from Table III into (16):

(40)

This system admits only a single dispersion relation, with
multiplicity 2:

C? C?
k2=k2=—>g2+Ly2 (41)
4,7 T a,

The quantity «?, identical to that introduced above at (37), is

. quite well behaved, increasing monotonically with § and G

all the way to the Nyquist points. Plots of 2 appear in Fig. 7
(FDH) and Fig. 8 (FEH). Both are qualitatively correct in
the well-resolved range; overall, their single-valued, mono-
tonic behavior is free of the difficulties which permeate the
FDD and FED schemes. ‘
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Fig. 3. (a) FDD contours of K2 in (§2,G?) space. The full range: ~ 72 < $2 <72, 0 < G? < w? is shown for the physical
(top) and spurious (bottom) modes. (b) FDD contours as in Fig. 3(a) for the well-resolved zone: |52, G?%| < 0.4.
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Fig. 4. Composite drawings of the physical and spurious FDD contours for a single value of K2 illustrating its
double-valued nature. A “moderate” value of K2 = 0.4 (top) and a “small” value of K2 = 0.01 (bottom) are shown.
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(bottom) are shown, illustrating the imperfect sorting of (D,C) modes
for these schemes.

As in the analytic Helmholtz solutions, E, and E, are
completely uncoupled, such that no interior constraints on D
or C are enforced by the difference equations themselves.
The physical and spurious modes may therefore be charac-
terized as pure curl and pure divergence modes, respectively,
perfectly emulating the analytic structure. As a result, speci-
fication of physical boundary conditions with D = 0 guaran-
tees the absence of spurious modes.

V1. PENALTY SCHEMES

Combination of the penalty method equation (20) with
Table III yields the discrete form:

A,C2y* + pA C20% — A, A k?
-(1-p)B,B,oy
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Nontrivial solutions exist if
(k2 ~px?) (k= k?) +(1-p)’e?=0 (43)

where k2 and €2 are defined above at (37) and (38). As in
the double-curl schemes, there are two roots:

k2=(1—;-£):<2i\/((1_2P)K2)2—(1—P)2€2- (44

As expected, this scheme reproduces the double-curl case for
p =0, and the Helmholtz case for p =1. When p is “small,”
the behavior resembles that of the double-curl scheme, as
demonstrated in Fig. 9, whereas when p is “large” both
physical and spurious roots approach p times their respec-
tive values at p =0, as seen in Fig. 10. In the latter case, the
emulation of set $2 (eq. (24)) is grossly in error, shifted far
from the correct values even in the well-resolved range.

D and C may be derived by substitution into (42) of (44)
for k* and (6) and (7) for E, and E,. It is readily verified
that, for p # 1, C/D is independent of p, and as discussed
above for the FDD scheme, D /C for the physical modes is
identical to —C /D for the spurious modes. The scope of
Fig. 5 is therefore significantly broadened. As a result, for all
p#1, the penalty scheme exhibits spurious modes with
nonzero C and physical modes with nonzero D and neces-
sarily invokes their blend in driven problems where D =0 is
physically correct. Only the unique value p =1 collapses the
two dispersion surfaces onto one, leaving D and C arbitrary,
thereby allowing the perfect sorting of D and C modes
described above for the Helmholtz equation.

VII. PRiMITIVE MAXWELL SCHEMES

The discrete representation of the coupled primitive
Maxwell equations, assembled directly from Table III and
(27), are

iweAxAy 0 MXByY Ex” 0
0 iweA,A, —iAd,Bo|{E, }= {0}

i4,Byy —id,B,o iopA, A, |\H,, 0

(45)
For nontrivial solutions the requirement is
2 2
B B
k2 | =* 2 (Y 2| .

we( (Ax) o a, v 0 (46)

A. FDM Scheme

The emulation of S1 gives exactly k2 = 0 here, unlike the
shifted version obtained from the FDD scheme. This method
is therefore free of type A vector parasites which originate
uniquely in that feature. The emulation of S2 is intuitively
appealing:

k?=BZo? + BZy?. (47)

A,Co?+ pA,Cly* — A, A, k>

—(1-p)B,B,yo )

()~ (8)
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Fig. 6. (a) FED contours of K2 in (§2,G?) space. The qualitative features are the same as that for the FDD discretization

(see Fig. 3). Both the physical (top) and spurious (bottom) modes are shown over the full range — w2 <S2<m?,
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0 < G? <72 (b) FED contours as in Fig. 6(a) for the well-resolved zone |$2,G?| < 0.4.
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Fig. 10. FDP contours of K2 with p = 10. Both the physical (top) and
spurious (bottom) modes are shown.

At low (8,G), K? is monotonic and well behaved. However
the folding of the B discretization factors at short wave-
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Fig. 11. FDM contours of K2 in (§%,G?) space. For S and G < /2,

there is monotonic behavior which emulates the analytic dispersion
relation; however, the folding of the B discretization factors gives rise to
type B and C parasites when S or G > /2.

lengths remains problematic. As can be seen in Fig. 11 this
scheme is qualitatively faithful to the analytic for § and
G <1 /2, but like the FDD scheme there is confusion be-
tween short and long waves. The resulting contours of con-
stant K? reveal type B parasites at K2 < 0.4. These ought to
be supported in the second or fourth quadrants, but the K2
contours erroneously fold back into the first quadrant. Addi-
tionally, all small K2> 0 are supported in zone C (poorly
resolved in both directions), a parasitic feature not found in
the FDD scheme except at uninterestingly large K 2.

This scheme is potentially fatally flawed. However, in its
common implementation it is discretized on a staggered grid
[8], [9]. The effect of the staggering is to truncate the Fourier
spectrum at the effective Nyquist points S, G = 7 /2, thereby
eliminating all of the spurious modes! Stated differently, the
effective mesh spacing is doubled by the staggering; on the
effective mesh A'=2h, the dispersion relation (47) is identi-
cal to that for the FDH scheme on mesh spacing A"

k2=C£202+C)’,272 (48)
where the discretization factor C. =sin(ah’/2)/(h'/2). The
FDM and FDH schemes have identical, parasite-free disper-
sion relations if the former is implemented on a staggered
grid with the same effective mesh spacing.

B. FEM Scheme

As in the FDM scheme, the emulation of S1 is unshifted
from k2 = 0; the dispersion relation is monotonically faithful
at low (S, G); and the folding of the B factors creates type B
and C parasites in the range S or G > 7 /2. K? contours for
this scheme appear in Fig. 12. For present purposes they are
not essentially different from their FD counterparts.

While the FDM scheme deals effectively with the parasite
problem by using a staggered mesh, there is no obvious,
unique equivalent approach within the conventional FE
framework. Indeed the FE method is often sought in an
attempt to avoid the complications of the staggered grid, for
example at boundaries or material interfaces. Unfortunately,
a parasite-free dispersion relation cannot be obtained with
simple, conventional FE discretization of the primitive equa-
tions, no matter how appealing that approach may be from
other considerations. The construction of the FE equivalent
of the staggered FD mesh remains an interesting and impor-
tant area of research (e.g. [10] and [11]).
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Fig. 12. FEM contours of K2 in (S2,G2) space. Note the presence of
type B and type C parasites for 2 or G2 > (i /2)* as in the FDM case
(Fig. 11).

VIII. DiscussioN

The conventional 2-D finite difference and finite element
methods examined here employ essentially similar discretiza-
tion techniques. As a result they share the same structural
behavior relative to vector parasites. In every case studied,
parasites arise in the weakness of “leapfrogged” numerical
derivatives—either the first derivative or the cross derivative.
The main conclusions therefore concern the underlying form
of the differential equations selected prior to discretization
with these methods. g

The double-curl schemes support double-valued disper-
sion relations, leading in turn to vector parasites of both type
- A and type B. The parasites become more pronounced as
(kh)* becomes small. The root cause, numerically, is the
cross-derivative term. At high resolution, this term converges
slightly more slowly than the other second derivatives, lead-

ing to type A parasites. The type B parasites arise in its.

folding at low resolution. The imperfect sorting of physical
and spurious modes in terms of (D, C) guarantees a spurious
mode presence if physical boundary conditions are enforced
for low and moderate values of K2,

The vector Helmholtz schemes have monotonic dispersion
relations of multiplicity 2, supporting both physical and spu-
rious modes. The sorting of these into curl and divergence
modes is, however, perfect. Specification of D = 0 in bound-
ary conditions therefore guarantees the absence of spurious
modes.

The penalty method is ineffective in eliminating vector
parasites except in the special case p =1, which reduces to
the Helmholtz equation. At low p, the parasitic structure
resembles that of the double-curl schemes; high p produces
completely wrong results. For all p #1, the sorting of the
(D, C) modes is imperfect and independent of p.

The primitive Maxwell schemes produce folded dispersion
relations, supporting type B and C vector parasites. This
problem is completely eliminated by use of a staggered FD
grid, and the dispersion relation in that case becomes identi-
cal to that of the FDH scheme with the same effective mesh
spacing. Successful use of the FE method with the primitive
equations depends critically on the correction or elimination
of the folded first derivative terms, which are the root cause
of the parasitic behavior.

In the FD arena, the use of the primitive equations with
staggered grids is well established in time-domain applica-
tions. Helmholtz-based operators remain relatively unex-
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plored for vector problems. For problems where precise
positioning of boundaries and satisfaction of normal inter-
face conditions are important, the Helmholtz approach with
a nonstaggered grid is a promising alternative.

In the FE arena, vector Helmholtz operators and their
generalizations offer unusual promise. Among the schemes
considered, and within the limits of this idealized analysis,
they alone are free of vector parasites when implemented on
conventional scalar elements with correct boundary condi-
tions. The conventional bases allow satisfaction of electro-
magnetic jump conditions at precisely placed boundaries and
interfaces, one of the motivations for selecting the FE ap-
proach ih general. In a separate paper [7] we present a
general inhomogeneous FE method which reduces to the
Helmholtz equation on homogenecus subregions, and
demonstrate the elimination of type A and B parasites which
infected comparable double-curl solutions. This approach
has been implemented in 3-D in the time domain [18] and in
the frequency domain [19]. Additional options within the FE
framework may also prove promising, including the use of
vector basis functions, staggered meshes, and mixed-interpo-
lation elements.

The posing of normal boundary conditions required by FD
or FE Helmbholtz solutions actually demands no extra infor-
mation. When Neumann tangential BC’s are given (ie.,
V X E or equivalently tangential H,) the normal component
of E is known exactly, a priori. A Dirichlet condition on E,
is therefore available. When Dirichlet conditions on tangen-
tial E are given, the condition V-E =0 provides the
Neumann condition on E,, i.e., dE, /dn. In all cases, the
process of specifying BC’s for the Helmholtz equation in-
volves only physical reasoning; while successful use of the
double-curl, penalty, or primitive schemes would in principle
rely on removal of unpredictable, spurious behavior which
depends fundamentally on mesh details.

Finally, we note that while considerable attention has been
paid to date to the eigenvalue spectrum of FE methods, less
attention has been given to the associated eigenvectors.
Clearly, spurious modes which are orthogonal to physical
forcing have no presence in forced solutions. Additional
future research could profitably focus on the character of the
eigenvectors as well as the eigenvalues.
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